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Note 

An Algorithm for the Generation of 
Random Numbers with Density C exp( -Alxl”) 

1. INTRODUCTION 

The numerical simulation of statistical processes requires simple and efficient 
algorithms to generate random numbers with given distributions. In principle, one 
can always generate numbers x with any desired distribution by a “direct method’ 
writing x = F-‘(u), where F-’ is the inverse of the cumulative distribution function 
and u is uniformly distributed in the unit interval. However, in most cases an 
adequate numerical fit to F- ’ is not available, and one must resort to general 
algorithms based on acceptance-rejection tests. The performance of such algorithms 
depends, in turn, on the possibility of generating efficiently the candidates for the 
test with a distribution which resembles closely the one in which one is interested 
on. 

A notable example in which these limitations can be circumvented is that of the 
normal distribution, for which the well-known polar method [ 1 ] provides a direct 
algorithm which avoids the use of Fe’ in favour of a simple transformation of two 
uniform random variables. The simplicity of the method makes it a very convenient 
and popular algorithm, at least when CPU time is not a crucial limitation. 

In this paper we present an extension of the polar method to the case of exponen- 
tial density functions of the form 

f,,(x) = c,,e-i’.+; 
VA”” 

___ 
c”=*~(l/“)’ 

where v > 1 is a real constant. Density functions of this form are of interest in a 
variety of statistical processes and numerical simulations. In particular, the case 
with v = 4 arises in the Monte Carlo simulation of the scalar sector of four-dimen- 
sional field theories [2], while larger values of v are relevant for the simulation of 
lower dimensional theories. To extend the polar method to density functions of this 
form one must solve a non linear differential equation which has no closed form 
analytic solution for values of v other than 1 or 2. Yet, the solutions are easily 
approximated by power expansions which allow a simple implementation of the 
method for any value of v. 

The method is presented in Section 2, while in Section 3 we discuss briefly its 
performance relative to other alternative algorithms. 
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2. DERIVATION OF THE METHOD 

As is well known, in the polar method for sampling the normal distribution [ 1 ] 
two independent normally distributed random numbers x and y (with zero mean 
and variance equal to 2) are obtained from 

x = Jz sin(27n4,); y = JZ cos (27ulJ, (2.1) 

where uI and u2 are uniformly distributed in the unit interval. 
For integer values of v, v > 1, one can extend this method to the density function 

f,, in Eq. (1 .l ) by constructing adequately generalized polar coordinates in v 
dimensions-generated from v uniformly distributed random numbers-whose 
projection onto the Cartesian axes yield v independent random numbers each with 
density f,. Although one can show that such a construction exists, it generalizes 
Eqs. (2.1) into transformations of increasing complexity which are unlikely to be of 
any practical use. Nevertheless, one can use that formal construction as a guideline 
and consider at the end only one of the random variables obtained in that way 
while the rest is discarded. At the same time, one can analytically continue the 
result to non integer values of v. 

Proceeding in this way (and setting for simplicity 1= 1 in Eq. (l.l)), for the 
sampling off,, one is lead to consider, for any v > 1, the following transformation 

x = (-log U,)““S,(U,), (2.2) 

where S,,(U) satisfies 

dS 2= 
du (2.3) 

The functions S,, are plotted in Fig. 1 for various values of v. They are anti- 
symmetric about u = i, and satisfy S,( 1) = - S,(O) = 1. To prove that this trans- 
formation produces the desired results, we compute directly the corresponding 
probability density function. Assume first that x ~0, so that S, ~0 and u2 < i. 
From Eq. (2.2) follows that the cumulative distribution function F(x) receives 
contributions from all u2 E [0, i] and, for each u2, from all U, E [0, ti,], where 
ii1 = exp[ -x/S,(u,)]“. Thus, for F(x) we have 

where in the last expression we used Eq. (2.3) to change the integration variable 
from ut to s= S,(u,). Differentiating with respect to x, and changing again the 
integration variable to t = JxI”( l/lsJ” - 1 ), we get for the density function 
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FIG. 1. The functions S, for various values of v. 

which is the same asf,,(x) in Eq. (1.1). The calculation is done in a similar way for 
XBO. 

For v + 1, S,(U) converges to a random sign, and (2.2) reduces to x = F ~ ‘, F 
being the cumulative distribution function. For v = 2 the solution to Eq. (2.3) is 
S,(U) = sin n(u - $), which is equivalent to the first transformation in Eq. (2.1) of 
the polar method. For other integer values of v, Eq. (2.3) can only be integrated to 
give the inverse function u = U(S), but this cannot be inverted in closed analytic 
form. Similarly, for non integer values of v, Eq. (2.3) cannot be integrated in closed 
form. The non-existence of a closed form expression for S,, is of course no surprise, 
and for practical purposes is irrelevant provided one can find a convenient and 
efficient algorithm for the numerical evaluation of S,. In that respect, at this point 
we offer only a preliminary analysis based on power expansions, whose purpose is 
to allow a first evaluation of the method, although they possibly do not provide an 
optimal implementation. 

Although tedious, it is straightforward to obtain power expansions for S,,(U) 
directly from Eq. (2.3), either about u = $ (S,, = 0) or about u - 4 = +i (S,, = + 1). 
One finds, about u = 4, 

where 

27L 1 
x= 

v sin(7c/v) ’ - 2 ( 1’ ’ 
v = x’ 
. 

(2.4a) 

(2.4b) 
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while, about u- $= k$, 

where 

i 

2n(v - 1) 
Z= (L Iu-;i)~cv-*’ 

v2-‘jv sin(n/v) 2 

(2Sa) 

(2.5b) 

The coefficients ak and Pk are listed in Table I for k 6 4 and any value of v. Trun- 
cating these series to a given order n, one finds that S, can be approximated by the 
first series for Iu - $1 <c(v) + a, and by the second for Iu - $1 3 c(v) - a, where c(v) 
is a slowly varying function of v that separates the domains of each approximation, 
and a > 0 is a finite interval of overlap of the two domains. Using n = 4 in a single 
precision FORTRAN code, the error of this approximation does not exceed one 
part in 10’ for v 3 1.2, and this is certainly sufficient for most statistical simulation 
experiments. Since both approximations overlap in a fairly wide interval, the choice 
of the transition point which separates both approximation is not critical. For n = 4 
we found it convenient to fit it to 

c(v)=O.5- 1.16eP1~2”-0.175eP0-0”” (v 3 1.2). (2.6) 

TABLE I 

Coeficients CI~ and pk of the Power Series Expansions 
for S,(u) (Eqs. (2.4), (2.5)) 

1 4vS-ilv”-2v’+13v2+7v+1 
“=3!v3 6v4+17v3+17v2+7v+1 

1 36v”-124v7+27v6+206v5-15v4-140v3-71v’-14v-1 
a4=4!y4 24v6 + 98v5 + 1 59v4 + 130~~ + 56v2 + 12~ + 1 

1 4v6-20v5+32v4-llv-llv2+7v-1 /I,= -- 
4! 96v5-200v4+ 164v’-66v2+ 13v- 1 
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3. DISCUSSION 

As a first evaluation of the method we briefly discuss its performance relative to 
two other alternatives, namely an accept reject algorithm and Forsythe’s general 
method for the sampling of exponential densities [3]. In doing this, we imple- 
mented our method using the series (2.4) and (2.5) truncated at k = 4, which 
delivers a performance roughly independent of the value of v although it is subject 
to further optimization. 

To sample the density J1 with an efficient accept-reject algorithm, one can use 
candidates with a gaussian density if v 3 2, or with exponential density if v < 2. 
However, in either case one must do some preliminary numerical work, for each 
chosen value of v, in order to adjust the variance of the candidates so as to optimize 
the acceptance ratio. The resulting optimized acceptance ratio equals one at v = 1 
and 2, and decreases as v departs from those values (reaches 0.76 as v -+ 2-, and 
0.48 as v + 00). CPU time measurements show that for v > 4 our method is faster, 
by a factor approaching 1.6 as v + co, while for v close to 1 or 2 (from above) the 
accept-reject algorithm is more eflicient, by a factor approaching 1.3. Thus, 
compared with this alternative, in its present form our method is competitive and 
provides a modest but significant improvement of the efficiency over a wide range 
of values of v. 

The density functionsf,, to which the present method applies are a particular case 
of the more general form f(x) = exp( -h(x)), with h’(x) > 0, for which Forsythe’s 
method [3] provides a generic sampling algorithm. As in the previous case, this 
method requires preliminary numerical work to generate tables of numerical con- 
stants which depend on the function h(x). More importantly, the use of those tables 
makes it quite sensitive to round off errors. When applied to the density functions 
fV, we found that Forsythe’s method coded in single precision is roughly 10 % faster 
than ours, but it can only reproduce the first few moments of the distribution (for 
example, in the range 2 6 v < 6, experiments with lo4 samples exhibit deviations 
which are significant already at the fourth moment). In contrast to this, our method 
was tested in high statistics experiments, with over lo6 samples, and no significant 
deviations were observed for a wide range of values of v. 

Summarizing, we have presented a method for the sampling of density functions 
of the form Cexp( -1.(x(“), which is based on a generalization of the polar method 
for the gaussian distribution. As in the gaussian case, the desired samples are 
obtained as a functional transformation of two uniformly distributed random 
numbers. Although one of the functions involved in the transformation is not 
elementary, its numerical evaluation does not seem to present any difficulties and, 
in particular, low-order polynomials provide an approximation adequate for most 
statistical applications. A preliminary evaluation of the method shows that its over- 
all performance compares favorably with other standard alternatives, regarding 
both speed and precision. A more detailed analysis leading to an optimized numeri- 
cal implementation of the method may further improve its performance. 
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